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Abstract

We examine the rates for the exclusive decays B → K(∗)`+`−. We use
the scaling predictions of the heavy quark effective theory to extract the
necessary form factors from fits to various combinations of data. These data
include the D → K(∗)`ν semileptonic decays, as well as the nonleptonic decays
B → K(∗)ψ(′) and the rare decayB → K∗γ. We use different parametrizations
of form factors, and find that integrated decay rates are not very sensitive to
the forms chosen. However, the decay spectra and the forward-backward
asymmetry in B → K∗`+`− are sensitive to the forms chosen for the form
factors, while the lepton polarization asymmetry in B̄0 → K̄0µ+µ− is largely
independent of the choice of form factors. Contributions from charmonium
resonances dominate the spectra and integrated rates. In our ‘best’ scenario,
we find Br(B̄0 → K̄0µ+µ−) = 2.0± 0.3× 10−6 and Br(B̄0 → K̄∗0µ+µ−) =
8.1± 2.0× 10−6. We also make predictions for other polarization observables
in these decays.
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I. INTRODUCTION

The rare dileptonic and radiative decays of B mesons have been the subject of much

recent interest. This is because the operators responsible for these decays are absent in the

standard model at tree level, and first appear at one-loop level. As a result, these decays

can provide sensitive tests of many issues, both within and beyond the standard model. The

mass of the top quark and the Higgs boson, the existence or not of other Higgs multiplets,

right-handed massive gauge bosons, or even extra left-handed massive gauge bosons, as well

as questions concerning supersymmetric models are just some of the issues to which these

decays are sensitive [1–15].

In order for these issues to be probed with any kind of precision in these decays, it

is crucial that all of the long-distance effects be understood. At present, it is believed

that this is the case for inclusive processes such as B → Xs`+`−, the rates for which are

taken to be the rates for the corresponding free-quark process. In this regard, the operator-

product-expansion (OPE) of the heavy quark effective theory (HQET) has been used to

treat inclusive decays beyond the free-quark approximation [1,2,16,17]. This approximation

is actually the leading term in a systematic expansion in the inverse of the b-quark mass,

and becomes arbitrarily accurate as the mass of the b quark approaches infinity. In addition,

it has been shown that corrections to the free-quark picture first arise at order 1/m2
b , so that

the predictions for the inclusive decay rates are expected to be quite reliable [16].

There are, however, two regions of phase space in which the OPE of HQET may be

less reliable in predicting the inclusive decay rates [1]. The first is near the charmonium

resonances, as the matrix elements of the four-quark operators that contribute in this region

may be subject to large final state interactions. These may be beyond the scope of the

HQET treatment of the inclusive process. The second is in the corner of phase space where

P 2
Xs ≈ m2

s, where PXs is the four-momentum of the hadronic final state Xs. This essentially

arises from the fact that, for the free quark decay, the spectral end-point occurs at P 2
Xs = m2

s,

while for the case of real hadrons, it occurs at P 2
Xs = m2

K. Apart from this, it is believed

that the OPE of HQET provides a reliable description of the inclusive decays.

For the exclusive decays, the situation is not quite as rosy, as the free quark operators

of the inclusive processes are replaced by hadronic matrix elements, which are described in

terms of a number of a priori unknown, uncalculable, non-perturbative form factors. The

dependence of these form factors on the appropriate kinematic variable may be modeled, but

this muddles things as it introduces some model dependence in the extraction of information

from the measured quantities.

In this regard, one may use the predictions of the heavy quark effective theory (HQET)

[18–32] to relate the form factors for the exclusive rare decays of B mesons to those of the

semileptonic decays of D mesons. There are two possible problems with this approach. The

first is that the charm quark is not particularly heavy, and application of HQET to the

decays of charmed mesons may be of questionable validity and value. The second is that to

apply the form factors for the D decays to B decay processes requires extrapolation of the
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form factors well beyond the range that is kinematically accessible in D decays.

Despite the relative ‘lightness’ of the c quark, the predictions of HQET appear to be

validated experimentally. For instance, the predictions for the decays of the Λc [26,33] are

supported by experimental measurements [34,35]. In addition, and perhaps more impor-

tantly, the predictions of HQET for the decays B → D`ν, in which the charm quark is

treated as heavy, appear to be supported by experimental data. One may expect this suc-

cess to carry over to the decays of charmed mesons, thus justifying the use of HQET for

such decays.

The question of extrapolation of form factors is a delicate one. In a recent article, Roberts

and Ledroit [32] have shown that depending on the choice of form factor parametrizations,

as well as on the choice of form factor parameters, the form factors for D decays may be

applied with or without success to B decays. The question of success or non-success was a

crucial one for the nonleptonic decays B → K(∗)ψ(′), for which the question of factorization

or not of the matrix element is also of key importance. Similar results have been reported

by other authors [36–38].

In [32], the authors found that all of the data treated, namely D → K(∗)`ν, B → K(∗)ψ(′)

and B → K∗γ, could be described in terms of a single set of universal form factors. In this

article, we use the results of that work to analyse the decaysB → K`+`− andB → K∗`+`− in

some detail, but concentrate on form factor effects rather than the effects of QCD coefficients,

as these have been treated elsewhere by many authors. In the case of the latter process,

we also examine the forward-backward asymmetry. In [32], effects due to charmonium

resonances, and charm and light continua, were ignored. These are included in the present

analysis.

The rest of this article is organized as follows. In the next section we discuss the stan-

dard model effective Hamiltonian for the rare dileptonic decays of interest, as well as the

form factors for the exclusive decays, and their HQET relations to the form factors for the

semileptonic decays of D mesons. Our results for the total decay rates, spectra, forward-

backward asymmetries and lepton polarization asymmetries are presented in section III, and

section IV presents our conclusions.

II. EFFECTIVE HAMILTONIAN AND FORM FACTORS

A. Rare Decays

In the standard model, the effective Hamiltonian for the decay b→ s`+`− has the form

Heff =
GF√

2

α

4π
V ∗tsVtb

[
2i
mb

q2
C7(mb)s̄σµνq

ν(1 + γ5)b¯̀γµ`

+ C9(mb)s̄γµ (1− γ5) b¯̀γµ`+ C10(mb)s̄γµ (1− γ5) b¯̀γµγ5`

]
, (1)
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where the Wilson coefficients Ci(mb) are as in the article by Buras et al. [6]. We choose not

to reproduce these coefficients here: the interested reader may consult the rich literature on

this subject. We do point out, however, that C9 and C10 receive short distance contributions

from the continua of light and charm qq̄ pairs, as well as from charmonium resonances (C9

only). This latter may be thought of as arising from the nonleptonic decay B → K(∗)ψ,

followed by the leptonic decay of the charmonium vector resonance, ψ → `+`−. Thus,

including these requires some assumption about the B → K(∗)ψ amplitude.

As has been done by other authors, we assume that this amplitude can be treated in

the factorization approximation, so that the contribution from each charmonium vector

resonance V can be written as

CV
9 =

16π2

3

VcbV ∗cs
VtbV ∗ts

(
fV
mV

)2
a2

q2 −m2
V + imV ΓV

. (2)

Here, mV is the mass of the charmonium state, ΓV is its width, and fV is its decay constant.

The constant a2 is the phenomenological factorization constant, whose absolute value has

been measured to be about 0.24. The sign of a2 is still uncertain, so we explore the effects

of changing this sign in the results that we present.

The hadronic matrix elements of the operators in eqn. (1) are

〈K(p′) |s̄γµc|B(p)〉 = fB+ (p + p′)µ + fB− (p− p′)µ,
〈K(p′) |s̄γµγ5c|B(p)〉 = 0,

〈K∗(p′, ε) |s̄γµc|B(p)〉 = igBεµναβε
∗ν(p + p′)α(p− p′)β,

〈K∗(p′, ε) |s̄γµγ5c|B(p)〉 = fBε∗µ + aB+ε
∗ · p(p + p′)µ + aB−ε

∗ · p(p− p′)µ,
〈K(p′) |s̄σµνb|B(p)〉 = isB

[
(p + p′)µ (p− p′)ν − (p + p′)ν (p− p′)µ

]
,

〈K∗(p′, ε) |s̄σµνb|B(p)〉 = εµναβ
[
gB+ε

∗α (p+ p′)
β

+ gB−ε
∗α (p− p′)β

+hBε∗ · p (p+ p′)
α

(p− p′)β
]
. (3)

Due to the relation

σµνγ5 =
i

2
εµναβσαβ, (4)

we can easily relate the matrix elements involving σµν to those in which the current is

s̄σµνγ5b. The superscripts B on the form factors signify that they are the ones appropriate

to the decays of the B mesons. These form factors may be related to the corresponding ones

for decays of D mesons, using the predictions of HQET.

The full formalism of HQET as it applies to these decays has been presented in [32].

Here, we briefly present the salient points of the discussion. In HQET, a heavy B meson

traveling with velocity v is represented by the Dirac matrix [39]

B(v)→ 1 + v/

2
γ5. (5)
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The matrix elements of interest are then [32,40]

〈
K(p)

∣∣∣s̄Γh(c)
v

∣∣∣B(v)
〉

= Tr

{
(ξ1 + p/ξ2) γ5Γ

1 + v/

2
γ5

}
,

〈
K∗(p, ε)

∣∣∣s̄Γh(c)
v

∣∣∣B(v)
〉

= Tr

{
[(ξ3 + p/ξ4) ε∗ · v + ε/∗ (ξ5 + p/ξ6)] Γ

1 + v/

2
γ5

}
, (6)

where

|B(v)〉 =
√
mB |B(v)〉 . (7)

These ξi are independent of the masses of the heavy quarks and mesons, as well as of the

exact form of the Dirac matrix Γ. Thus, they are valid for both D → K(∗) and B → K(∗),

as well as for transitions mediated by vector, axial-vector and tensor currents.

The relationships between the form factors of eqn. (3) and the ξi are

ξ1 =

√
mB

2

(
fB+ + fB−

)
,

ξ2 =
1

2
√
mB

(
fB− − fB+

)
= −√mBs

B,

ξ3 =
m3/2
B

2

(
aB+ + aB−

)
,

ξ4 =

√
mB

2

(
2gB − aB+ + aB−

)
= m

3/2
B hB,

ξ5 = − 1

2
√
mB

(
fB + 2mBv · pgB

)
= −
√
mB

2

(
gB+ + gB−

)
,

ξ6 =
√
mBg

B =
1

2
√
mB

(
gB− − gB+

)
. (8)

The corresponding relationships for D meson form factors require the replacement of all

factors of mB in eqn. (8) by factors of mD. Finally, we note that inclusion of radiative

corrections requires the replacement [41]

ξb→si = ξc→si

[
αs(mb)

αs(mc)

]− 6
25

. (9)

III. RESULTS AND DISCUSSION

All of the results we present are obtained by using the form factor parametrizations of

[32]. In that work, two scenarios were explored for the form factors. In the first scenario, ξ1

and ξ4 had the form

ξi = ai exp
[
−bi (v · p−mK(∗))

2
]

= ai exp

[
− bi

4m2
D

(
q2

max − q2
)2
]
, (10)
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ξ2 and ξ5 had the form

ξi = ai exp [−bi (v · p−mK(∗))] = ai exp

[
− bi

2mD

(
q2

max − q2
)]
, (11)

while ξ5 and ξ6 had the form

ξi = ai exp
[
−bi (v · p)2

]
. (12)

In the second scenario, the ξi were parametrized as

ξi = ai (1 + biv · p)ni , (13)

with ni = −2, −1, 0, 1.

In each scenario, the ai and bi were free parameters that were fixed by fitting to various

combinations of experimental measurements. Thus, for each scenario, four sets of {ai, bi}
were generated. These corresponded to fits to (I) the semileptonic decays D → K(∗)`ν;

(II) the semileptonic decays D → K(∗)`ν and the nonleptonic decays B → K(∗)ψ; (III) the

semileptonic decays D → K(∗)`ν, the nonleptonic decays B → K(∗)ψ and the nonleptonic

decays B → K(∗)ψ′; (IV) the semileptonic decays D → K(∗)`ν, the nonleptonic decays

B → K(∗)ψ, the nonleptonic decays B → K(∗)ψ′ and the rare decay B → K∗γ. A fuller

discussion of these fits and parameter sets is given in [32], but we emphasize that all of

the results we present are obtained using form factors that are consistent at least with the

measurements in D → K(∗)`ν, including polarization ratios. In addition, in this analysis,

we have used Vtb = 0.9988, Vts = 0.03, Vcs = 0.9738, Vcb = 0.041, mb = 4.9 GeV, mc=1.5

GeV, mt=177 GeV.

In fig. 1 we show our results for the rare dileptonic decays B → K(∗)µ+µ− using the

form factors of the exponential scenario. Fig. 2 shows the corresponding spectra obtained

using the form factors of the multipolar scenario. In each of figs. 1 and 2, the graph at the

top left is dΓ/dq2 for B → Kµ+µ−, while the second upper graph shows the spectrum for

B → K∗µ+µ−. The lower graphs show the corresponding curves for transversely and longi-

tudinally polarized K∗’s in B → K∗µ+µ−. For comparison, Fig. 3 shows the corresponding

spectra for production of τ leptons, in the multipolar scenario.

The most dominant features of these curves are the sharp maxima due to the first two

vector charmonium resonances. Apart from these two features, the spectra we have obtained

are very similar to those obtained in [32]. In particular, the zeroes in some of the distributions

still persist.

The two charmonium resonances also dominate the total rates, as the numbers in tables I

and II are all at least twice as large as the corresponding numbers reported in [32], where the

resonance effects were not included. In these tables, the labels of the columns correspond

to the fits described above. This means, for instance, that the predictions of set III are

obtained using the form factors from fit III, in which we have included the data for the

semileptonic decays D → K(∗)`ν, the nonleptonic decays B → K(∗)ψ and the nonleptonic
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FIG. 1. Differential decay rates for the processes B → Kµ+µ− and B → K∗µ+µ−, in the
exponential scenario. The graphs are, starting at the top left and moving clockwise: B → Kµ+µ−;
B → K∗µ+µ−; B → K∗µ+µ− for longitudinally polarized K∗’s; B → K∗µ+µ− for transversely
polarized K∗’s. In each graph, I means that the form factors used were obtained from a fit in
which only data for D → K(∗)`ν have been included; II means that data for D → K(∗)`ν and
B → K(∗)J/ψ have been included; III means that data for D → K(∗)`ν, B → K(∗)J/ψ and
B → K(∗)ψ′ have been included; IV means that data for D → K∗`ν, B → K∗J/ψ, B → K∗ψ′ and
B → K∗γ have all been included, and does not apply to the process B → Kµ+µ−.

TABLE I. Predictions for decay rates of B → K(∗)µ+µ− in the exponential scenario. I means
that only D→ K(∗)`ν has been included in the fit; II means D→ K(∗)`ν and B → K(∗)J/ψ have
been included; III means D → K(∗)`ν, B → K(∗)J/ψ and B → K(∗)ψ′ have been included; IV
means D → K∗`ν, B → K∗J/ψ, B → K∗ψ′ and B → K∗γ have all been included, and applies
only to decays with K∗’s in the final state.
Quantity Experiment I II III IV

ΓB→Kµ+µ− (10−18 GeV) < 158.0 2.32± 4.46 0.78± 0.19 0.78± 0.19 -

ΓT
B→K∗µ+µ−

(10−18 GeV) - 0.39± 0.22 0.42± 0.10 0.41± 0.08 0.41± 0.09

ΓL
B→K∗µ+µ−

(10−18 GeV) - 0.28± 0.07 28.9± 20.3 2.47± 0.32 2.46± 2.65

ΓB→K∗µ+µ− (10−18 GeV) < 10.1 0.67± 0.22 29.4± 20.3 2.88± 0.28 2.88± 2.65
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FIG. 2. Differential decay rates for the processes B → Kµ+µ− and B → K∗µ+µ−, in the
multipolar scenario. The graphs are, starting at the top left and moving clockwise: B → Kµ+µ−;
B → K∗µ+µ−; B → K∗µ+µ− for longitudinally polarized K∗’s; B → K∗µ+µ− for transversely
polarized K∗’s. In each graph, the key is as in fig. 1.

TABLE II. Predictions for decay rates of B → K(∗)µ+µ− in the multipolar scenario. The
columns are as in table I.
Quantity Experiment I II III IV

ΓB→Kµ+µ− (10−18 GeV) < 158.0 1.86± 1.59 0.86± 0.15 0.87± 0.15 -

ΓT
B→K∗µ+µ−

(10−18 GeV) - 10.8± 2.18 0.69± 0.14 0.69± 0.17 0.60± 0.06

ΓL
B→K∗µ+µ−

(10−18 GeV) - 142.8± 28.5 3.54± 2.48 2.86± 2.07 2.93± 0.89

ΓB→K∗µ+µ− (10−18 GeV) < 10.1 153.6± 28.4 4.22± 2.48 3.56± 2.07 3.52± 0.89
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FIG. 3. Differential decay rates for the processes B → Kτ+τ− and B → K∗τ+τ−, in the
multipolar scenario. The graphs are, starting at the top left and moving clockwise: B → Kτ+τ−;
B → K∗τ+τ−; B → K∗τ+τ− for longitudinally polarized K∗’s; B → K∗τ+τ− for transversely
polarized K∗’s. In each graph, the key is as in fig. 1.
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TABLE III. Predictions for decay rates of B → K(∗)e+e− in the multipolar scenario. The
columns are as in table I.
Quantity Experiment I II III IV

ΓB→Ke+e− (10−18 GeV) < 158.0 1.87± 1.60 0.86± 0.15 0.87± 0.15 -

ΓT
B→K∗e+e− (10−18 GeV) - 15.7± 3.29 1.07± 0.36 1.09± 0.42 0.74± 0.08

ΓL
B→K∗e+e− (10−18 GeV) - 144.7± 28.9 3.59± 2.52 2.90± 2.11 2.96± 0.91

ΓB→K∗e+e− (10−18 GeV) < 10.1 160.4± 28.7 4.66± 2.53 4.00± 2.14 3.70± 0.90

decays B → K(∗)ψ′. The errors that we quote in all of the numbers we report are estimates

only, and are obtained by using the covariance matrix that arises from the fit.

Apart from the charmonium features shown in these figures, the differences in the pre-

dicted spectra for different parametrizations of form factors, but within the same scenario,

and from the exponential to the multipolar scenario, are quite striking. The reader is

reminded that for all of these curves, the form factors are consistent with all of the mea-

surements in the semileptonic decays D → K∗`ν. Nevertheless, apart from a few obvi-

ous exceptions, the predictions for the total rates are surprisingly similar for the different

parametrizations and scenarios.

If the final leptons are electrons, all of the curves we have shown are essentially the same,

with the exception of those for transversely polarized K∗’s for small q2 (and consequently,

for unpolarized K∗’s as well). This is because the differential decay rate for transversely

polarized K∗’s behaves like 1/q2 for small q2, and the different end-points for electrons and

muons means that the spectra are different at small q2. In fact, the 1/q2 dependence is

softened by a factor of
√
q2 − 4m2

` in the decay rate. That phase space extends further for

electron pairs has essentially no impact on the rate for B → K`+`−, nor for longitudinally

polarized K∗’s in B → K∗`+`−. However, there is a significant increase in the rate for

transversely polarized K∗’s, with a slightly less significant effect for unpolarized K∗’s. This

is seen by comparing the numbers in tables II and III. The effect is also shown in fig. 4.

For tau leptons, all rates are smaller by about an order of magnitude.

In addition to the differential decay rate, there are two other quantities of interest for

these decays. One is the differential forward-backward asymmetry, AFB, which may be

defined as

AFB =

∫ 1
0

dΓ
dq2d cos θ`

d cos θ` −
∫ 0
−1

dΓ
dq2d cos θ`

d cos θ`∫ 1
0

dΓ
dq2d cos θ`

d cos θ` +
∫ 0
−1

dΓ
dq2d cos θ`

d cos θ`
. (14)

Here, θ` is the angle that the negatively charged lepton makes, in the dilepton rest frame,

with the momentum of the daughter K∗, and the denominator is simply dΓ/dq2. This

quantity is identically zero, in the standard model, for B → K`+`−.

The forward-backward asymmetries that result from our calculations are shown in fig. 5

for B → K∗µ+µ−, and in figure 6 for B → K∗τ+τ−. In each case, the upper graph is for

the exponential scenario, while the lower one is for the multipolar one. We again emphasize

that the differences in the curves for each graph arise from changes in the parameters of
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the form factors. We also point out that the form of this asymmetry will also depend on

the physics content of the Wilson coefficients, and that the curves shown all correspond to

standard-model physics only.

The second quantity of interest in these decays is the lepton polarization asymmetry,

defined as

P` =

dΓ
dq2

∣∣∣
λ=−1

− dΓ
dq2

∣∣∣
λ=+1

dΓ
dq2

∣∣∣
λ=−1

+ dΓ
dq2

∣∣∣
λ=+1

, (15)

where the subscripts λ denote whether the spin of the `− is alligned parallel (λ = +1) or

antiparallel (λ = −1) to its motion. Fig. 7 shows the results we obtain for this quantity

for muons in B → Kµ+µ−, while fig. 8 shows the corresponding results for B → K∗µ+µ−.

Figs. 9 and 10, respectively, show the corresponding results for tau leptons.

The most striking feature of fig. 7 is the insensitivity of Pµ to the parametrization of

the form factors. The same feature also appears in fig. 8, but mainly for the large dilepton

mass region of phase space. The insensitivity of this polarization observable to form factors

has not previously been anticipated as far as we know, and suggests that the polarization
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asymmetry could be one of the more useful observables for examining the physics content

of the Wilson coefficients.

This asymmetry in B → K`+`− is independent of form factor parametrizations due to

a combination of two effects. The first of these is the small lepton mass (for ` = µ or

e), which means that many terms in the differential decay rate are small for most regions

of phase space. The second is the relative smallness of the C7 coefficient compared with

C9 and C10. The consequence of this, together with the small lepton mass, is that any

form factor dependence in the polarization asymmetry disappears. In fact, to a very good

approximation, in the limit in which C7 is small, we find

Pµ ≈ 2
ReC9C∗10

|C9|2 + |C10|2
+O (C7) . (16)

This is also independent of the assumptions of HQET, since only the hadronic vector and

axial vector operators contribute to Pµ: eqn. (16) does not rely on any special relationships

among form factors. This asymmetry therefore provides a direct measure of the interference

between C9 and C10. In addition, experimental observation of significant departures from

this nearly constant value for muons would signal larger values of C7, and therefore, possibly,

new physics.

Figure 8 shows a similar effect in the polarization of the muons produced in B →
K∗µ+µ−, particularly at large values of the dilepton mass. In fact, to the same level of

approximation, the lepton polarization in this process is given by the same expression, eqn.

(16). This is a better approximation at large values of q2, as form factor effects become

more significant at smaller q2 for this decay.

Unfortunately, in the case of τ leptons, where the polarization may be more easily mea-

sured, the fact that the lepton mass is large means that this polarization variable depends

on the particular choice of form factors, as can be seen in figs. 9 and 10. Nevertheless, some

simplification does occur at the kinematic end-point, where q2 = q2
max. There, form factor

dependence again disappears, and the tau polarization asymmetry is determined solely in

terms of the coefficients C9 and C10 (assuming that C7 is small), and the hadron and lepton

masses, mB, mK∗ and mτ (at this kinematic point in B → K`+`−, the polarization asym-

metry vanishes identically). Thus, for given values of the Wilson coefficients, there is a firm

prediction for this asymmetry at maximum q2 in B → K∗τ+τ−. We note that the form of

the curve we obtain for this quantity in the exclusive channel B → K∗τ+τ− is very similar

to that obtained by Hewett [42] in the inclusive process B → Xsτ+τ−.

Finally, we turn to the question of the sign of a2. Since this parameter enters only

through the charmonium resonances, it should not be surprising that the effects of a change

in its sign are most clearly visible in the vicinity of these resonances. In the decay spectra,

there is some modification of the shape, but only very close to each resonance. The effect

on AFB is a little more interesting, and is displayed in fig. 11. However, since the difference

between the two sets of curves shown occurs between q2 of 9.52 and 9.64 GeV2, it is doubtful

whether future experiments will ever have the q2 resolution needed to distinguish one set of
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curves from the other. Thus, we would suggest that the prospects of determining the sign

of a2 from these decays are not very promising. We find a similar result when we examine

the effect of the sign of a2 on the lepton polarization asymmetry.

Our predictions for the process B → K`+`− are two to three orders of magnitude smaller

than present experimental upper limits, but they are about three times as large as the

rates predicted by Ali et al. [3]. Our absolute rates correspond to branching fractions of

(1.8 ± 0.4) × 10−6 in the exponential scenario, and (2.0 ± 0.3) × 10−6 in the multipolar

scenario.

For B → K∗`+`− our predicted branching fractions are (6.6±0.8)×10−6 and (8.1±2.0)×
10−6 in the exponential and multipolar scenarios, respectively, for muon pairs. For electron

pairs, the multipolar scenario predicts a branching fraction of (8.5±2.1)×10−6 . Furthermore,

we find the ratio ΓT /ΓL in B → K∗µ+µ− to be 0.17± 0.06 in the exponential scenario and

0.20± 0.08 in the multipolar scenario. For B → K∗e+e−, the multipolar scenario predicts a

value of 0.25 ± 0.10 for this quantity. It is somewhat surprising but nonetheless reassuring

that even this polarization ratio is largely independent of form factor parametrizations. This

suggests that our predictions for total rates should be quite reliable, as uncertainties due to
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form factor parametrizations have less impact on integrated quantities.

The numbers that we have quoted for B → K∗`+`− correspond to III of the exponential

scenario and IV of the multipolar scenario. In the case of the exponential scenario, we

have chosen III as the best numbers to present for two related reasons. The first is that

the theoretical uncertainties on IV are unreasonably large, while those on III are more

‘reasonable’. However, as can be seen from the graphs (and the tables), there is very

little difference between III and IV in this scenario. The problem arises because in going

from III to IV, we have added the CLEO measurement of B → K∗γ to the fit, and the

exponential scenario can not accomodate the experimental measurement (the ‘best fit’ in

this scenario is more than a factor of 100 smaller than the measurement). Consequently,

the fit parameters (and our predictions) remain the same in going from III to IV, but the

errors on the predictions have increased. In contrast with this, IV of the multipolar scenario

provides a satisfactory description of all the data used in the fit, including the measured

rate for B → K∗γ.

IV. CONCLUSION

There is a plethora of issues that we have not touched in this note. Extensions to

the standard model and their effects on the Wilson coefficients, scale dependence of these

coefficients, and the forms of these coefficients at leading order and beyond are beyond the

scope of this article. While these issues are very important, recent calculations suggest

that, at least for the inclusive decays, some kind of convergence is at hand. This is not

so for the exclusive decays. Our results indicate that while results for integrated rates and

lepton polarization asymmetries appear to be largely independent of the parametrization

chosen for the form factors, differential rates and the forward-backward asymmetry are not.

Measurements of these quantities in exclusive channels will therefore serve to probe form

factor models or parametrizations. This is therefore similar to the situation in the exclusive

decay B → K∗γ, which has turned out to be a testing ground for form factor models.

The scenario that best describes all of the experimental data is the multipolar one and, in

this scenario, we find that the universal form factor ξ6 is linear in v ·p. Using this scenario, we

predictBr(B̄0 → K̄0µ+µ−) = (2.0±0.3)×10−6 andBr(B̄0 → K̄∗0µ+µ−) = (8.1±2.0)×10−6.

These numbers are consistent with other model calculations [10], and include the effects of

the first two charmonium vector resonances. We also predict ΓT /ΓL in B̄0 → K̄∗0µ+µ− to

be 0.20± 0.08.

In the course of this study we have discovered that the polarization asymmetries in

the decays B → K(∗)µ+µ− are, to a very good approximation, independent of form factor

effects, and are determined solely in terms of the Wilson coefficients C9 and C10. This

is particularly so for the decays to the ground state kaons, as the approximation is valid

over all of phase space. Thus, these observables could be very useful tools for probing the

physics content of the Wilson coefficients. However, in order for this to be a practical tool,
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experimentalists must be able to measure the polarization of the daughter muons in these

decays, with adequate precision.

Hewett [42] suggests that the polarization of the tau leptons could be measurable at B

factories that are under construction. If that is the case, there should certainly be sufficient

numbers of events produced in the muon channels, at least in the ‘clean’ region away from

the two charmonium resonances, as the decay rates for muons and taus are comparable

in this region of phase space. The remaining question is therefore simply one of whether

the polarization of the muon can be measured in these decays. This may be possible for

sufficiently slow muons, or if the muons can be stopped in the detector.

For tau leptons, simplifications such as those mentioned above do not occur, and the

polarization asymmetry depends on form factors for almost all of phase space. The sole

exception is at the kinematic end point in the decay B → K∗τ+τ−, when the dilepton

pair has maximum q2. There, for given values of the Wilson coefficients, there is a firm

prediction for this asymmetry in B → K∗τ+τ−. We emphasize again that the fact that the

asymmetry is independent of form factors does not depend on the assumptions of the heavy

quark effective theory. Whether either of these polarization effects can ever be measured

will have to await completion of the B factories.
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